

# **Briefing to the ESSAAC Technology Subcommittee (TSC)**

on

# Radar/Radiometer Processing Technology Roadmap

Paul A Rosen
Jet Propulsion Laboratory
California Institute of Technology
April 14, 2004





### **Background**

- Instrument data processing technology is currently primarily ground-based
  - Data processing needs far outstrip on-board capabilities
  - Instruments are designed with output data streams that fit within affordable downlink and on-board storage capabilities
  - Some basic processing in FPGAs and ASICs has been flown for NASA instruments
  - Commercial satellites often use expensive special purpose ASICs for processing (multiplexing, filtering, beam-forming)
- Future science instruments will produce prodigious amounts of data
  - Distributed array antennas with many sampled phase centers
  - Desire for synoptic coverage of very wide areas at high resolution
  - Desire for autonomous decision making based on observations

ESTO

2



## **Enabling vs. Enhancing**

- · On-board processing is enabling if
  - The data collected could not affordably be downlinked and processed (e.g. multi-aperture beam synthesis)
  - The instrument configuration depends on real-time calculations (e.g. active wavefront control, RFI rejection)
- On-board processing is enhancing if
  - Data could be processed either on-board or on the ground, with benefits to processing on board (e.g. cost reduction)
- Scientists and instrument designers rarely consider enabling processors as part of their vision
  - Processing technology is not often instrument specific
  - Designers do not control processing technology developments
  - Downlinks and storage capabilities continuously improve



**OBP Application Roadmap** NASA Earth Science Enterprise, Technology Planning Workshop (Jan 01) Workshop Title **Key Conclusions Next Steps** Information Technology (on-board processing/ sensor control Crucial to near term missions with reconfigurable
 Develop investment priorities Solicit proposals with recoming and observations
Fundamental to the Visions
Sensorweb concept Global Precipitation AUTONOMOUS SCIENCE (onboard <u>decision-making, maximize science return, lowe</u>r mission cost) Pattern recognition & classification **Event**  Features (regular & anomalies) detection & tracking
 Processing, Information analysis, extraction, and reduction **Detection** · Data fusion and compression • Event-based science planning, adaptive scheduling & re-plan Mission · Appropriate responses, generation of new observation series Reactive · System reconfiguration & task execution coordination **Planning** · Constellation management & autonomous navigation Discrimination & selection of science data (raw, core, notice)
 Onboard filtering to reduce downlink rate **Downlink** Optimization Tailoring data directly to users Constellation data sharing, processing, and analysis 07 10 12 13 03 04 05 06 08 09 11 NPOESS LISA FKSI Con Aura Glast **GPM** L-BRDF MagCon ConX

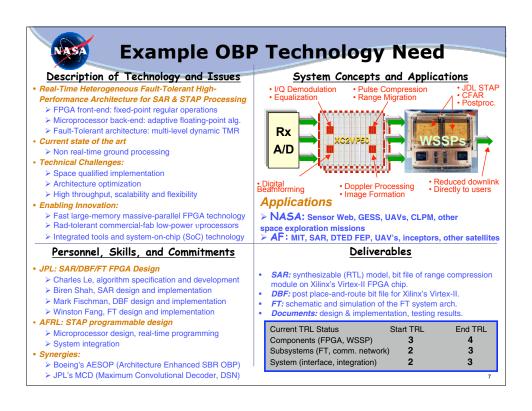


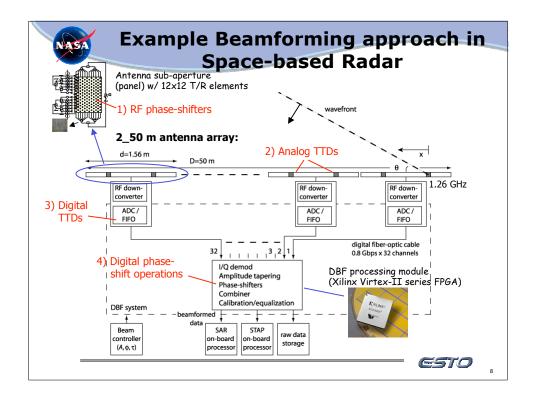
### Mapping Measurement Scenarios to Processing Technology

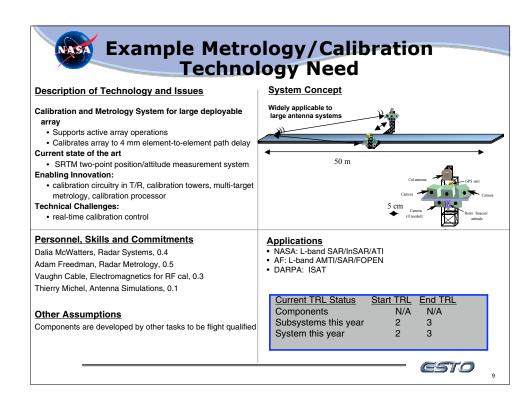
- Processing Group (Dan Evans, Paul Rosen) followed same flow-down of requirements as radar/radiometer hardware elements
  - Science focus area requirements
  - Measurement scenarios meeting science requirements
  - Role of on-board processing in accomplishing these measurements
  - Processing capabilities challenges defined
- · General Observations
  - SAR instruments generally require large on-board storage capacity, particularly interferometric applications
  - Multi-aperture systems require high throughput processors and data links
  - Passive systems need high bandwidth low precision digital hardware
  - Active systems need medium bandwidth high precision digital hardware
  - As system migrate to higher orbits, radiation hardening and fault tolerance become important considerations

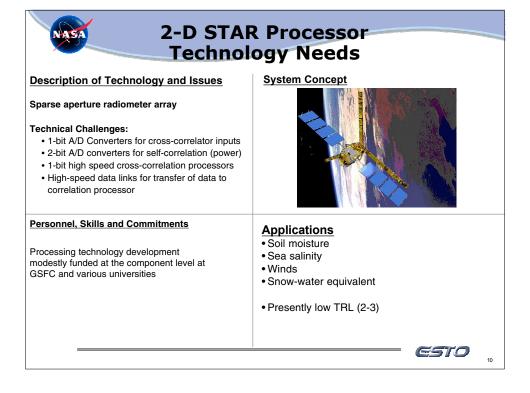


\_





# Processing technology development needs for NASA ESE science focus areas


- Large rad-hard on-board storage capability
  - Measurements in virtually all focus areas
- Real-time on-board processing
  - Polarimetric and Interferometric measurements in solid Earth and Carbon Cycle focus areas
  - Real-time tracking of hurricanes and other weather
- Radiation Hard Processors
  - Measurements acquired from orbital altitudes exceeding 2000 km from all focus areas
- Processing Algorithms
  - Real-time algorithms for topography incorporating state information
  - High-earth orbit curvature effects in SAR processing
  - Mapping of standard algorithms to real-time environment
  - RFI Mitigation
- High Performance A/D and digital receivers
  - Digital-beamforming processors
  - High-performance, low-power A/D converters for radars
  - Modular digital receivers
  - High-rate low-precision A/D converters for radiometers




6











# Processing Challenge Histogram

### (Measurement Scenarios Supported)

| Large Data Storage                                                            | 21 |
|-------------------------------------------------------------------------------|----|
| Processing Algorithms                                                         | 8  |
| High Performance RHP                                                          | 21 |
| High Performance A/D Digital Receivers                                        | 21 |
| Real-time On-board Processing                                                 | 34 |
| • 1-bit A/D for Radiometry                                                    | 9  |
| • 2-bit A/D for Radiometry                                                    | 9  |
| High-bandwidth Data Links (Interior to Instrument)                            | 13 |
| Digital RFI Mitigation                                                        | 1  |
| On-board High-rate Digital Signal Distribution                                | 4  |
| <ul> <li>High-speed, High-resolution, Digital Spectrometers for</li> </ul>    |    |
| Sounding                                                                      | 3  |
| Combined Passive/Active Processing, Distribution                              | 1  |
| <ul> <li>Massively Parallel 1-Bit Cross-correlators for Radiometry</li> </ul> | 9  |





### **Processing Challenges Overview**

#### Where we are now

Processing algorithms a variety of applications do not currently exist

Limited bandwidth data links interior to instrument

No existing on board high rate digital distribution

Sounder processing performed on ground

1-bit cross-correlators for STAR under

#### Where we plan to be

>one terabit radiation hardened on board storage with 100 MHz clock rate and < 100 W access power

Position and Velocity, Topography, Polarimetric SAR, MEO SAR, and Rain Profile Algorithms

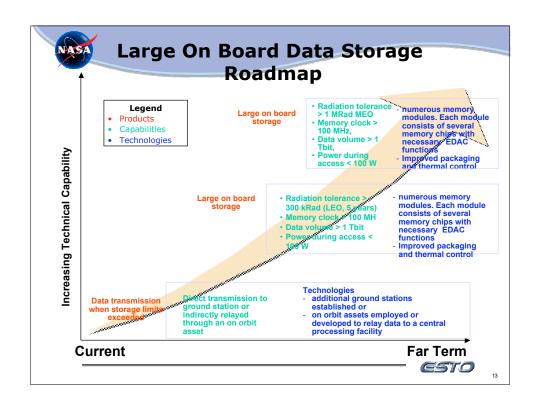
A High Performance Radiation Hardened Processor for harsh radiation environment

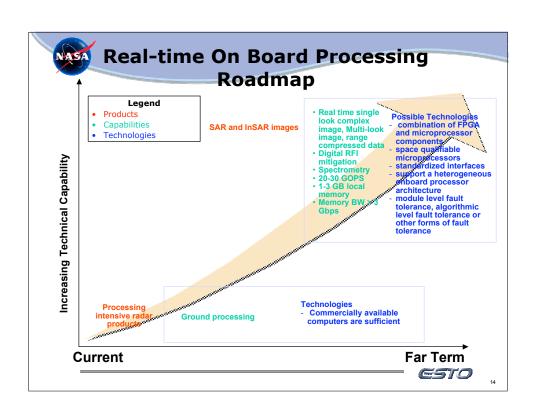
Multi-channel digital receiver/beamformer

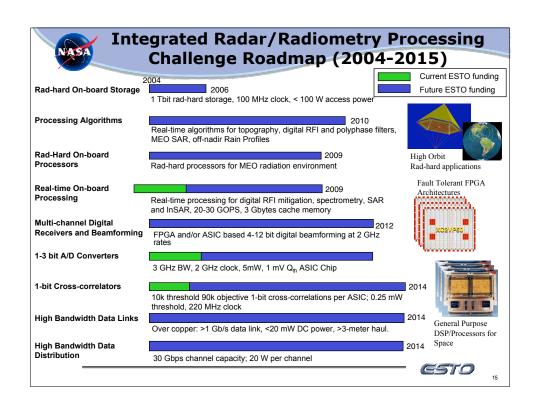
Real-time on-board SAR and InSAR processing 200 MHz, 10mW ASIC Chip

High-bandwidth data links sufficient for STAR

Data cleansed by means of digital processing


High-rate data bus in deployed STAR instrument ~30 Gbps channel capacity; ~20 W per channel


Digital autocorrelator or polyphase spectrometer 4-8 GHz bandwidth, a few Watts/spectrometer), & radiation hardening


10k threshold 90k objective 1-bit cross-correlations per ASIC; 0.25 mW threshold, 0.1 mW

2004

~ 2014 or earlier





